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A LINEAR STRATIFIED OCEAN MODEL OF
THE EQUATORIAL UNDERCURRENT
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Ocean Sciences Center, Nova University, 8000 North Ocean Drive, Dania,
Florida 33004, U.S.A.
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604 J.P. McCREARY

ground Viisila frequency. The model is also similar to the earlier homogeneous
ocean model of Stommel (1960). He extended Ekman dynamics to the equator by
allowing his model to generate a barotropic pressure field. The present model differs
in that the presence of stratification allows the generation of a baroclinic pressure field
as well.

The most important result of this paper is that linear theory can produce a realistic
equatorial current structure. The model Undercurrent has a reasonable width and
depth scale. There is westward flow both above and below the Undercurrent. The
meridional circulation conforms to the ‘classical’ picturesuggested by Cromwell (1953).
Unlike the Stommel solution, the response here is less sensitive to variations of para-
meters. Ocean boundaries are not necessary for the existence of the Undercurrent but
are necessary for the existence of the deeper Equatorial Intermediate Current.

The radiation of equatorially trapped Rossby and Kelvin waves is essential to the dev-
elopment of a realistic Undercurrent. Because the system supports the existence of these
waves, low-order vertical modes can very nearly adjust to Sverdrup balance (defined
below), which in a bounded ocean and for winds without curl is a state of rest. As a
result, higher-order vertical modes are much more visible in the total solution. This
property accounts for the surface trapping and narrow width scale of the equatorial
currents. The high-order modes tend to be in Yoshida balance (defined below) and
generate the characteristic meridional circulation pattern associated with equatorial
Ekman pumping.

1. INTRODUCTION

The Pacific Equatorial Undercurrent was rediscovered in August 1952 (Cromwell ¢t al. 1954)
and immediately captured the attention of the oceanographic community. Similar currents
have since been found in the Atlantic and Indian Oceans as well, and a bewildering variety of
explanations have been proposed to account for the phenomenon. The papers discussed below
provide only background information pertinent to the present study. An extensive survey of
the relevant literature, both observational and theoretical, can be found in Philander (1973).
Gill (1972) and Moore & Philander (1978) review various models of equatorial ocean circula-
tion with application to the Undercurrent.

(a) Observational background

An example of the Undercurrent from the equatorial Atlantic, which summarizes many of its
familiar characteristics, is given in figure 1. The current appears as a region of geostrophically
balanced eastward flow located in the strong pycnocline beneath the surface mixed layer. It is
confined within 200 km of the equator, is about 100 m thick, and reaches speeds in excess of
120 cm/s. The meridional circulation associated with this jet can be inferred from the tempera-
ture data. The spreading of isotherms suggests that there is upwelling above and downwelling at
and below the core of the Undercurrent; conservation of mass then requires divergence of water
from the equator at the ocean surface and convergence of water slightly above the current core.
Knauss (1966) has estimated the magnitude of the convergence and upwelling (in the Pacific
Ocean) to be 1-10 cm/s and 0.5-5 x 10~3 cm/s, respectively.

The Undercurrent is usually found sandwiched between westward flows (Philander 1973). The
surface drift typically has speeds of the order of 50 cm/s but can vary considerably in strength.
Occasionally there is no westward surface flow at all (Jones 1969). Westward flow beneath the
Undercurrent, the Equatorial Intermediate Current, can extend to depths of 1200 m and can
have speeds as large as 40 cm/s.

When the Undercurrent is well developed the strong near-surface pycnocline and also the
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current core shoal toward the east. The shoaling of the pycnocline replaces a thick, well mixed

surface layer in the western ocean with a deeper, relatively homogeneous layer, the thermostad,
in the eastern ocean (see, for example, Philander 1973, figure 7). With a level of no motion at
greater depths, the surface dynamic-height field must slope downward toward the east. It
follows that the near-surface waters, including the Undercurrent, experience an eastward

pressure force. In the central Pacific the downward slope of the sea surface is roughly — 5 x 108,
equivalent to a pressure gradient force (—p~1p,) of 5 x 10-®dynt /g; at the depth of the current
core the pressure gradient force decreases to a value of 2.6 x 10-% dyn/g (Knauss 1966).

A A\

5°N o 5° 5N

1 1 1 1
(a)\/ (b)
iy 25

FiGUrE 1. An example of the Atlantic Equatorial Undercurrent at 5° W in January 1975: (a) Temperature/°C
and (b) zonal velocity/(cm/s) as a function of latitude and depth. The unmarked contour at the core of the

Undercurrent is 120 cm/s. After Moore et al. (1978).

Recent observations suggest that the equatorial current structure is more complicated than the
classical description of the preceding paragraphs would suggest; for example, the Undercurrent
meanders (Duing et al. 1975). At the base of the well developed surface mixed layer in the western
Pacific a secondary ageostrophic eastward current has been observed (Hisard et al. 1970).
Beneath the Undercurrent, flow need not be entirely westward but can consist of a set of stacked
zonal jets (Luyten & Swallow 1976; C. C. Eriksen 1979 private communication). In the eastern
Pacific and elsewhere subsurface eastward jets, distinct from the Undercurrent and Counter-
current, have been observed a few degrees from the equator; these jets are associated with the
poleward limits of the thermostad (Tsuchiya 1973).

t dyn = 105 N.

62-2
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(b) Theoretical background

In nearly all explanations of the Undercurrent it is assumed that the primary driving mech-
anism is the easterly tradewinds. These explanations are based on the following physically
motivated ideas. At the equator the trades force a westward drift. Water piles up in the western
ocean and so generates an eastward pressure force near the surface (Montgomery & Palmén
1940). This force then provides the source of momentum to drive the Undercurrent (Arthur
1960). A heuristic application of mid-latitude Ekman theory near the equator suggests that the
trades must also force a surface divergence of water at the equator and so create upwelling and
deeper convergence there (Cromwell 1953).

Stommel (1960) was the first to incorporate these ideas in a mathematical model. His momen-
tum equations balanced the Coriolis force with the vertical diffusion of momentum (the Ekman
balance) but also retained pressure gradients. Since his model ocean was unstratified, the pres-
sure field was necessarily barotropic. Itis the presence of these pressure gradients that prevents
the equatorial singularity of Ekman flow. The Stommel model is the simplest way to extend
Ekman dynamics to the equatorial region in a homogeneous ocean.

Stommel’s solution depends strongly on the depth of the ocean. If it is applied to the entire
water column, there is a very poor comparison with observation (see, for example, discussion of
equations (51) and figure 9). For a realistic choice of eddy viscosity the currents are far too large
and far too narrow. Moreover, the subsurface flow is not surface-trapped, but extends to the
ocean bottom. If the solution is applied to a surface mixed layer about 100 m thick, there is much
better agreement, and many of the qualitative features described above are present in the solu-
tion. Even in this case, however, the model has major limitations. It is not possible to choose a
value for eddy viscosity that simultaneously sets a realistic magnitude as well as a width scale for
the flow. Finally, the model Undercurrent is ageostrophic, and, by assumption, lies entirely
in the surface mixed layer.

Evidently Stommel’s dynamics neglect physical processes that are important near the equator.
A number of other studies of thin homogeneous layers have examined the effects of terms neg-
lected in Stommel’s equations (particularly the nonlinear terms) and do manage to avoid some
of the difficulties inherent in this solution (Charney 1960; Robinson 1966; Charney & Spiegel
1971; Gill 1971; McKee 1973; Cane 1979). Nevertheless, because the actual Undercurrent lies
predominantly in the thermocline, it seems likely that stratification (necessarily ignored in the
layer models) must play an essential role in its dynamics.

The importance of stratification was illustrated in a simple way by Arthur (1960). He con-
sidered the same linear equatorial balance of terms as did Stommel (that is, an equatorial
balance between the vertical diffusion of momentum and the pressure gradient force) but, be-
cause his model ocean was stratified, he allowed the pressure field to have a baroclinic component.
He then assumed a pressure field similar to that observed and calculated the resulting equatorial
current structure over the entire water column. For reasonable values of eddy viscosity, the flows
have realistic magnitudes; moreover, they are strongly trapped near the surface! The unsatisfying
aspect of this calculation is that the pressure field is set by assumption. In an adequate theory of
the Undercurrent, the baroclinic pressure field must emerge as a result of the solution of the
equations of motion.

Lighthill (1969) popularized the study of a linear stratified model that does internally generate
its own baroclinic pressure field. He dropped nearly all nonlinear terms from the governing
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equations but retained the effects of the vertical advection of density by linearizing that term
about a background density state. Wind stress enters the ocean as a body force in a surface mixed
layer, and the deeper ocean s inviscid. The advantages of the Lighthill formulation are enormous,
both mathematically and conceptually. Solutions are expressed as sums over all possible vertical
normal modes allowed by the system, and in this way three-dimensional dynamics reduce to a
set of two-dimensional equations. The time-dependent response of each mode is conveniently
described in terms of the propagation of equatorially trapped waves. There is a natural width
scale for equatorial phenomena, the baroclinic equatorial Rossby radius of each mode. Further
discussions of this model can be found in Moore & Philander (1978), Cane & Sarachik (1976,
1977) and McCreary (1977).

The Lighthill model has had considerable success in describing transient ocean phenomena
(Lighthill 1969; Anderson & Rowlands 1976; McCreary 1976, 1977). In fact, Gill (1972) has
used the approach to study the initial spin-up of the Undercurrent from a quiescent ocean.
However, the model cannot describe the observed steady equatorial current structure. In the
steady state, flow is entirely in the surface mixed layer, and if the driving winds have no curl there
is no flow at all (see the discussion of equations (53)). The success of the Arthur calculation
suggests that this failure may occur not because of the neglect of nonlinearities, but rather because
the deeper ocean in Lighthill’s model is inviscid. As a result, there is no way for momentum or
heat to diffuse into or out of the surface mixed layer.

Recently, Semtner & Holland (1980), and also Philander & Pacanowski (1980), have studied
fully three-dimensional, nonlinear, stratified ocean models. These models are remarkably
successful in reproducing many of the observed features of the Undercurrent. However, as is
often the case with complicated numerical models, it is difficult to determine the dominant
processes at work in them. Important questions remain unanswered in both of these studies.
What mechanisms adjust the width and depth scales of their solutions? How is the baroclinic
pressure field established? What role do equatorially trapped Rossby and Kelvin waves play in
the models? Most importantly, are nonlinearities (other than the vertical advection of density) in
fact necessary for the generation of the Undercurrent?

(¢) The present approach

This paper continues the effort to relate the easterly tradewinds to the presence of the Equa-
torial Undercurrent. Specifically, the effects of stratification on the steady equatorial circulation
are investigated. The model developed here is an extension of Lighthill’s (1969) model that
allows the diffusion of heat and momentum into the deeper ocean but at the same time retains
all the advantages of Lighthill’s approach. In particular, by choosing depth-dependent diffusion
coefficients of a specific form, solutions can still be represented as sums over vertical normal modes.

The simplicity of the model allows a discussion of its dynamics in a novel way and suggests
answers to the questions posed above. For example, there is a close connection between the
radiation of equatorially trapped Rossby and Kelvin waves and the steady solutions found here,
and that relationship is exploited throughout. The linear model is able to account for many of the
observed features of equatorial current structure. This success suggests that the neglected non-
linearities are not essential for the existence of the Undercurrent.
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2. THE MODEL OCEAN
(a) Equations and assumptions

In a state of no motion the model ocean has a stably stratified background density structure
pv(z) and an associated Viisala frequency My(z). Model equations linearized about this back-

ground state are e —fo+p, = (),
vt futp, = (v.),
Uy +v,+w, =0, (1)
pr—& ' Niw = (kp)ss»
b =—ps

where u, v, and w are the zonal, meridional and vertical velocity anomalies, respectively, p and p
are the pressure and density anomalies, g is the acceleration due to gravity, fis the Coriolis
parameter, and v and « are coefficients of eddy viscosity and eddy diffusivity. Constant factors of
P, the average density of the water column, are everywhere ignored. The equatorial g-plane is
assumed; that is, f = By. A comprehensive study of similar linear sets of equations can be found
in Veronis (1973), or Moore & Philander (1978).

Throughout this paper, eddy coeflicients are assumed to be inversely proportional to Ng,
that is, v=A/N} «=A4/NE; (2)
moreover, as is evident in (1), the diffusion of heat and the diffusion of momentum have slightly
different forms. These choices are crucial to the entire approach taken here. Only in this way is it
still possible to find solutions, as Lighthill did, as expansions of vertical normal modes. Previous
workers havealreadyrecognized the mathematical convenience of these forms of vertical mixing;
Fjeldstad (1963), and later Mork (1972), used them in their internal wave studies. Another
assumption is that the constant of proportionality, 4, is the same for both v and «, and it effect-
ively sets the Prandtl number to unity. This restriction is not essential to any of the mathematical
procedures discussed below, and can be relaxed if desired.

Surface boundary conditions, at z = 0, are

vu, =71%, w,=1%, w=p/NE=0, (3)
where 7¢ and 7¥ are the zonal and meridional components of wind stress acting at the ocean
surface. The ocean bottom, at z = — D, is flat. Bottom boundary conditions are

vu, = w, =w = p/NE = 0. (4)

Requiring that p/ N2 = 0 at ocean boundaries means that both the atmosphere and the ocean
bottom act as constant-temperature sources of heat. The condition of zero stress at the bottom
assumes that the bottom is very slippery. This assumption might be worrisome if solutions
developed large bottom currents, but, as we shall see, the currents are strongly surface-trapped.
If Mo(z) changes discontinuously at some level in the water column, at z = — H, then equations
(1) require that u, v, p, w, p/NE, vu,vv, and (kp), are continuous (5)

across the interface.
(b) Barotropic and baroclinic modes

Because of the specific form for eddy coefficients and boundary conditions, solutions to (1) can
be expressed in terms of the eigenfunctions ,(z), where each y,, satisfies

V=2 s, (6)
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. . 1[0
subject to the condition c—zf Y,dz = 0. (7
nJ —D

If there is a discontinuity of My at z = — H, (6) is solved so that
¥,(z) is continuous (8)

across the interface. The eigenfunctions are the vertical normal modes of the system and form an
orthogonal set. They are commonly normalized so that

¢n(0) = 1. (9)
It is convenient to order them so that the eigenvalues ¢, decrease monotonically with n. In that

case as 11— 00, ¢, —> const. x 771,
The solutions to (1), subject to the boundary conditions (3)—(5), can then be written

N N N
u= X U Y, v= ;vnwn’ p=Z bV
n=1 n=1 n=1 (10)
N z N
= 3 w'nf l”ndZ, p= p) Pn ¢nza
n=1 —-D n=1

where the expansion coefficients «,, v, p,, w, and p, are functions only of x, y and ¢. There are
standard techniques for finding the equations governing the expansion coefficients. The equa-

tions are y
(at'}'ﬁ) Uy _fv'n +hnz = Fm
A
(at +;E) Uy +fu'n +pny = Gm
: (11)
A\ pn
Wy = (at+ )pn, pn=-p'_7'by
cn
where
/J yidz, G, _Tv/f y2dz. (12)

F, and G, measure how well each mode couples to the driving wind.
The n = 0 eigenfunction is distinctly different from the others. Equations (6), (7), and (8) have
a solution when ¢, = co. The form of this eigenfunction is simply

¥o(2) = 1, (13)

which is the barotropic mode of the system. The eigenfunctions for n > 1 have finite eigenvalues.
To satisfy (7) the eigenfunctions must now meet the condition

fo Yo(z)dz = 0. (14)

Since u,, and v, are both proportional to ¥, (z), (14) implies that horizontal transport vanishes
for these modes. They are the baroclinic modes of the system.

Equations (11) reduce to a simple form for the barotropic mode. Since ¢, o0, terms involving
¢, can be ignored. Therefore, steady barotropic flow is in Sverdrup balance and requires the
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existence of wind stress curl. If the wind has no curl there are no barotropic currents; rather, a
pressure gradient force (that is, a sea level slope) everywhere balances the wind stress. The solu-
tions of this paper are driven by steady winds with weak curl, and the barotropic mode does not
significantly affect the currents. For this reason it is ignored in the remainder of this paper, and
the sums in (10) begin at n = 1.

In theory there are an infinite number of baroclinic eigenfunctions that must be included in the
sums (10). In practice, the upperlimit of the sums is necessarily a finite value, N. So, this method
of solution will be of value only if the series converge rapidly enough with 7, so that N need not be
too large. As we shall see, for realistic choices of pn(z) and v, rapid convergence is ensured.

(¢) A surface mixed layer

It is possible to incorporate a constant-thickness surface mixed layer into the model simply by
assuming that My(z) = 0 for z > — H. The eigenfunction problem, as defined in (6)—(8), is still
well posed, and so the eigenfunctions as well as the solutions (10) remain well behaved. (Strictly
speaking, since factors of N2 appear in the denominators of several quantities, one must first
take My(z) = efor z > — H, find the solutions (10), and then determine the limit ¢ 0.)

The dominant effect of the mixed layer on the eigenfunctions is that

V=0, z> —H. (15)

Therefore, in the mixed layer, #, v, and p are independent of z, w varies linearly with z, and
p = 0. Stress, defined by

T = limvu,, (16)
e—>0
varies linearly throughout the layer, from a surface value set by the wind, to a value at z = — H
set by the deeper ocean. In effect, wind stress acts as a depth-independent body force throughout
the layer. Heat flux, defined by .
Q = lim (xp)., (17)
e—0

is constant throughout the layer. So whatever heat is absorbed (lost) at the base of the layer is
instantly lost (absorbed) at the surface. The mixing coeflicients, » and &, are very large (infinite)
inthelayer. These properties are all to be expected in a very well mixed surface layer.

The model does allow both upwelling and downwelling of fluid from the mixed layer. Up-
welling occurs in a sensible way, but downwelling does not. When a water particle upwells into
the layer its density anomaly p instantly becomes zero. The model provides a mechanism that can
account for this density jump, since mixing is so strong that the water particle is essentially
always in contact with the atmosphere, where p = 0. When a water particle downwells, p
changes instantly from zero to some value that is not necessarily zero. There is no corresponding
mechanism that can create this jump, because mixing coefficients have a finite value in the deep
ocean.

A related difficulty inherent in this mixed layer formulation is that p is not necessarily positive
Jjust beneath the interface, and it is possible for the model to generate density inversions there.
According to (10) and (11), in steady state w and p have the same sign just beneath the inter-
face. (This property follows because for all z, f ‘ ,¥ndz <0, and ¢, > 0 there.) Consequently,
upwelling produces a stably stratified density jump across the interface, but dcwnwelling neces-
sarily produces a density inversion.
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With the presence of this surface mixed layer the model is very similar to Lighthill’s model. The
sole difference is that, since his deep ocean is inviscid, his linear stress profile in the mixed layer
vanishes at z = — H. Equations (11) reduce to Lighthill’s equations when 4 = 0.

3. THE SOLUTION

To evaluate the solutions (10) it is necessary to determine the expansion coefficients u,, v, and
b, thatsatisfy (11). Solutions to (11) are difficult to find for winds that depend arbitrarily on x,y
and ¢. So, in this section solutions are found for a wind field with the separable form

7% =1, X(x) Y(y) elot, 1V = 0. (18)
The coupling coefficients, (12), are then given by
0
Fy =X Yy et [ e =10, X0 Y(g) e,
-D (19)
Gn =0,

where 7, is defined in an obvious manner. X(x) and Y (y) are arbitrary functions, in which Y(y)
weakens away from the equator, and X(x) is non-zero only in a region of finite extent; hence the
model is forced by a patch of wind confined to the ocean interior. Meridional winds are ignored
since they are not necessary for the existence of the Equatorial Undercurrent. To illustrate more
clearly how the effects of radiation enter into the solution, it is useful first to find the model
response to oscillatory winds. The response of the model to a steady wind is found simply by
setting o = 0 everywhere in the resulting solution.

Solutions are found for unbounded, as well as bounded, oceans. When boundaries exist they
are simple vertical barriers located at the positions x = x,, x, and separated by,the distance
d = x; —x,; northern and southern boundaries are ignored. There can be no flow across these
barriers, so in the bounded ocean basin the solutions must satisfy the boundary conditions

u, =0 at x = xpx;. (20)
Nearly all the quantities involved in the following discussion depend in some way on the eigen-
value ¢,, and for that reason they should be labelled with a subscript » (the exceptions are f, o,

X, Y, and f). For notational simplicity, this subscript will be deleted unless confusion might result
from its absence. For the same reason, factors of eit are ignored until the end of the derivation.

(a) The Hermuite functions

Because f = fy solutions can be expressed as sums of Hermite functions, ¢,,, which satisfy

¢myy - (f2/c2) ¢m =- a?n ¢m> (21)
and decay at high latitudes. One representation of these functions is
¢ (77) = _._g__:}).m_.e%ﬂz_me—ﬂz (22)
m [2mm!at]E ™ dym”
where o2, = ad(2m+1), =0,1,2,...,}
;n af(2m+1), m } (23)
af = pf/c, 1 =0ayy.

Recursion relations, which follow immediately from (22), are

77¢m = J_12'(m + 1>%¢m+1 + T/%m% ¢m—l> }

Py = —Ja(m+ 1)@, + Jomd .
63 Vol, 2¢8. A

(24)

It
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Let ¢,,, [74],, and [¢,],,, be the Hermite coefficients of the functions ¢(7), 79, and g¢,, respectively.
Then, with the aid of (24), :
[74]m =

[Qy]m =

It follows from (23) that a characteristic width scale for these functions is 3. This distance

(m+ 1)%qm+1+:/l2'm% Qm—l,} (25)

1
WE)
I/lé(m + 1)% Im+1— ﬁm% Im—1-

defines the equatorial Rossby radius of deformation for each vertical mode, and solutions
involving these functions generally have some aspects that reflect this scale. Because of the
dependence on ¢, ay! decreases with increasing z. In fact, as n— oo, ag! = const. x n~%.

(8) The unbounded response

Elimination of «, and p,, from (11) gives

fz w2 ,3 f 1
Umx"‘”yu_ﬁv"'?fv-'_i?)v”:EEF—E)FW (26)

where w=0-—14/c (27)

Let v,, and ¥,, be the Hermite expansion coefficients of »,, and Y. Then these coeflicients satisfy

2

w 1 1
Umzz +£vmw_ (O‘?n '_'6_2") U = Ton %o (_C[ﬂy]m X—E[Yv]m Xx) . (28)

1w

Equation (28) is an ordinary differential equation in x, and the method of Fourier transforms
provides a straightforward method of solution. Designate the transform of a variable ¢(x) by

4(k). Then, ) (1/0) (1Y T = (k/©) (B

U = = Ton%g (k_k;n) (/C—/Cgl) > (29)
2 2\ 13
where {”’2=§%{1$[1—4%(afn—?—2)] } (30)
Expanding (29) into partial fractions gives
2 pm X
¥, = — S — 31
1 Y1, — (k7 Y,
here P g g WABY L= (/) (V] -
k3§t — k2
and j' $ j. The inverse Fourier transform of (31) is
2 z m .
(%) = =13 PP f e~ike X dx eitkyotod), (33)
ji=1 L;j
where L,L,=+o0. (34)

The lower limits, L;, are not specified in taking the inverse Fourier transform of (31). Rather,
they must be chosen to satisfy appropriate radiation conditions. This point is discussed later in
this section.

Elimination of p,, from the first and third equations of (11) gives

w? .0 o)
—(am+;—2—)u=16—2ﬁ;+vw+1?ﬁ (35)
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Let u,, be the set of Hermite expansion coefficients of #,,. Then these coefficients must satisfy
2
- (aa:z+%) Uy, = i%“o [ﬂv]m +a0[vq]mw+ig)§Fm' (36)

With the aid of (25), #,, is given by

7 o= 1 A 3 27m+1 1.3 ﬁm_l 9 Fm
Up, lao[Jz(m+1) F—w/c vsm k+w/c]+lc2(k—w/c)(k+w/g)’ (37)

Just as before, the solution proceeds by expanding (37) into partial fractions and then inverting
each term. Some algebra, again with the aid of (25), shows that all except one of the terms with
denominators £ + /¢ vanish. The inverse Fourier transform of (37) reduces to

u,(x) = Jg(m+ 1)} R+ JgmiS+48,, T

m+1

2 m+1 x
P j e—ik7 e X dy e} ot
L;j

= 1 3 7
Ja%o (m+1) ,-§1 Krtl—w/c

1 3 2 J?n—l x 1 e 1 "
— a0y M? Y, o e~k T Xdxeltky atob)
j=1

Ton | gitwior i—(/0)z+ot)

+ 600 %), ef Xdxe (38)
where 8, is the Kronecker é-function (8,,, = 1 when m = 0; 8,,, = 0 if m # 0), and R, S, and
T are defined in the obvious manner.

The p,,-field can be found in a manner completely analogous to that for the u,-field. The two
fields have very similar forms; p,, is just «,, multiplied by ¢ and with the sign of R reversed, that is,

Pm(®) =c[—Js(m+ 1) R+ Jom2 S+0,,, T]. (39)

In summary, the solutions to (11) in an unbounded ocean are

M
9n = 'm§0 Im ¢m(77)’ (40)

where ¢ is u, v, or p. Just as in the sum over vertical modes, in principle, an infinite number of
Hermite functions contribute to the sum (40). In practice, the upper limit must be truncated at a
finite value M, and this approach will be useful only if the series converge rapidly enough with m
so that M need not be too large. Again, for realistic choices of v and py(z), rapid convergence is
assured.

(¢) The presence of radiation

Let £ be any of the quantities £7*, £, or — w/c. Then each term of (33), (38), and (39) has the
form
x
{const. f e~ike X dx} ellkztot), (41)
+o

This expression clearly describes a wave with wavenumber £, frequency o, and amplitude given
by the expression in curly brackets.
In the absence of friction in the deep ocean, so that w = o, these waves are the familiar un-
damped equatorially trapped Rossby and Kelvin waves. The wavenumbers 7%, £3*, and —w/c
63-2
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614 J. P. McCREARY

correspond to Rossby waves, with westward and eastward group velocities, and the Kelvin
wave, respectively. In the presence of friction, w is complex, and the wavenumbers necessarily
have an imaginary part. However, it is still possible to interpret the waves as Rossby and Kelvin
waves. They have the same meridional structure as the inviscid waves, and differ only in that now
they are damped in the direction of their group velocity. It is useful to keep the analogy with the
inviscid waves even when o — 0. In this limit, where w = —i4/¢% all wavenumbers are purely
imaginary. Rossby and Kelvin waves no longer propagate away from their source region, but
simply decay from it.

Note that the amplitude in (41) is proportional to an integral of X, rather than X itself. There-
fore, the amplitude is not necessarily zero outside the wind-forced region. The choice of lower
limit in these integrals thus governs whether radiation appears to the east, the west, or on both
sides of the wind patch. Waves with eastward (westward) group velocity can appear only east
(west) of the patch. Equivalently, in the steady state, waves that decay eastward (westward) can
appear only east (west) of the patch. The choice (34) satisfies these requirements.

(d) Boundary effects

The unbounded response (40) does not satisfy the constraint (20). It is necessary to add to it
packets of free waves excited at the ocean boundaries (Moore & Philander 1978; Cane & Sara-
chik 1977; McCreary 1976, 1977). Waves generated at western boundaries, designated by a
prime, must have eastward group velocities. Rossby waves with eastward group velocity are

ki +w | m e
[¢m+1 ()kfn (m + 1) ¢m—1] ek (x—%)y
/ O ) o)
L - 42
Um ccxo;%(m+1)%Am¢me 2 ) (42)
kP +ow( m \? m
=c4 [¢m+1 Ckfn (m+ 1) ¢m—1] ek 2=y,
where m = 0,1, 2, ..., and 4,, is an arbitrary amplitude. Them = 0 wave is the Yanai wave.
An additional eastward propagating wave, labelled the m = —1 wave, is the equatorially
trapped Kelvin wave,
uly = Ay ppe @@= pl = cul;, v, =0. (43)

Waves generated at eastern boundaries, designated by a double prime, must have westward
group velocities. The appropriate Rossby waves are

A S L
o = . e YR g eiklae (44)
ooy Jgmb
pm = cBy, [22"—;2 (m_mﬂ)% Prni1t ¢m*1] el
where m = 1, 2, 3, ..., and B,, is an arbitrary amplitude. The set begins at m = 1 because there

are no westward propagating equivalents of the Yanai and Kelvin waves.
At a western ocean boundary each 4,, is chosen to cancel all components of zonal flow pro-
portional to ¢,,,,. One component arises from (38), u,,,(x,). The Rossby waves u,, and ..,
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contribute two other pieces. The u;,,, Rossby wave leaving the western boundary makes a final
contribution. With the aid of (42) and (44) it follows that each 4,, is given by

4 - m+2\* ckPt2 4w m+1\ckP — o
m \m+3) ckitE—p T m | ckP+ow

e_ik;’.dBm + e*ik;”+2dBm+2 - um+1<x0)> (45>

wherem = —1, 0, 1, ..., M. At an eastern ocean boundary each B,, is picked to cancel all com-
ponents of zonal flow proportional to ¢,, ;. By similar arguments

m-—2 m
B = (: - ;)% 22"_2 + Z)) B (m—r—nl-—l)% Z_IIZ"_J—F—Z eidd,, +es A,y +u, (%),  (46)
wherem =1, 2, 3, ..., M. In both (45) and (46), B, = B_, = 0.

In principle, the number of boundary waves needed is infinite. In practice, only a finite
number, M, of waves are used. Anotherradiation condition requires that Ay, , = 4;,,; = 0. This
choice ensures that there are no sources of energy at high latitudes along the western boundary.
In that case, (45) and (46) form a system of 2A/ + 2 equations in the 2A/ + 2 unknowns, 4_4, ...,
Ay, By, ..., By They can be written down in the form of a highly banded matrix equation, which
can be solved economically on a computer. In summary, the solutions to (11) that satisfy (20) are

M M M
tn= S dutn()+ X fut 3 o (47
where ¢ is u, v, or p. - -

Itis possible to alter the approach outlined above to find the boundary response generated in
an ocean with a single ocean boundary. If the model has only an eastern boundary, set 4,, = 0
for all m, and use (46) to find B,,. If the model has only a western ocean boundary, set B,, = 0 for

all m, and use (45) to find 4,,.

4. REsuLTs

The model was used to study the response of the ocean to a wind field representative of the
steady trades in the Pacific Ocean. The wind has the form (18) with 7y = — 0.5dyn/cm?, o = 0,

X(x) = {cos (mx/Ax), |x| < $Ax, (48)
0, |x| > 3Ax,
and Y(y) = (L+y°/Ay?) e7v¥a, (49)

where Ax = 5000 km and Ay = 1000 km. For y < Ay, Y (y) is virtually constant, and so there is
only a weak wind curl in the tropical ocean. Along the equator wind curl vanishes. The shaded
region of figure 3 indicates the extent of the wind patch, and the thin line its zonal profile, (48).
Figure 2 shows seven different profiles of background density structure py(z). Profile 1 varies
linearly with depth beneath a surface mixed layer of thickness H = 75 m. The remaining curves

are described by
P Z>—H,

p(z) = {

50
P+ Api[1 — eI 1+ Apy[1 —eeH], 2 < — B, %)

where 4; = 200 m, b, = 1000 m. For profile 2, Ap; = 0, Ap, = 0.005,and H = 75 m. The unlabelled
curves have a strong near-surface pycnocline where Ap; = 0.003, Ap, = 0.002. They differ only
inthat H = 0, 50, 75, 100, and 150 m. Unless stated otherwise, pp(z) is always given by the thicker
curve. This profile is typical of the density structure in the central tropical Pacific (Reid 1965).
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The size of the mixing coefficients, v = k = 4/N2, varies considerably with depth. If there is a
surface mixed layer, they are infinitely large there. Just beneath the mixed layer M, attains its
maximum value, and so v and « reach a minimum, vmin. At greater depths N, decreases (except
for profile 1 of figure 2) and they can attain a much largervalue. vin is a measure of the amplitude
of mixing in the immediate vicinity of the Undercurrent. Unless stated otherwise, 4 is always
chosen so that vmin = 0.55 cm?/sec. This choice is consistent with minimum values of eddy
viscosity measured at the core of the Atlantic Equatorial Undercurrent (Crawford 1976). When
po(z) is the thicker curve of figure 2 and vmin = 0.55 cm?2/s, the value of v at the ocean bottom is
57 cm?/s.

0 ;
_1 -
km |
s 1
_2 L
0.999 1001 1003 1005
glem?

Ficure 2. Profiles of background density structure, p,(z). Profile 1 has a constant gradient below the mixed layer.
The remaining profiles are described by equation (50). The unlabelled curves have a strong near-surface
pycnocline typical of the tropical Pacific, and differ only in the thickness of the surface mixed layer. Most
results correspond to the thicker curve.

Unless stated otherwise, the model ocean has both eastern and western boundaries, at x, =
—5000 km and x, = 5000 km. The positions of the boundaries are indicated in figure 3. The
depth of the ocean is D = 2500 m.

It is necessary to choose sufficiently large values of ¥ and A in the sums (10) and (47). In a
series of tests N and M were varied over a wide range of values and solutions were compared.
For N > 50, M > 35 they were virtually identical. The results discussed here have N = 100,
M = 70 and so are more than adequately resolved.

(a) The model Undercurrent

Six velocity sections describe the three-dimensional flow field. Figure 3 shows the positions of
these sections relative to the equator and ocean boundaries. Figures 4a—f show the zonal and
meridional circulation patterns of sections 1-5, respectively.

The zonal flow has features that compare very well with observation. There is an eastward
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#

equatorial jet situated in the main thermocline just beneath the mixed layer. The e-folding width
scale of this jet is less than 200 km, and it is about 100 m thick. Its speed increases steadily away
from both boundaries and reaches a maximum of about 150 cm/s slightly to the east of the wind
stress maximum. A surface westward flow reaches a maximum somewhat greater than 70 cm/s.
Westward flow also exists beneath the Undercurrent. This flow extends to about 400 m and
reaches a maximum speed greater than 20 cm /s. Slightly off the equator all strong zonal currents
are in geostrophic balance. Even at the equator they are consistent with geostrophy in that the
meridional curvature of the pressure field, p,,, is given by — fu.

km
400

T
—_

equator G

—400

—25

Ficure 3. A schematic diagram showing the location of sections 1-6, the position of ocean boundaries, and the

structure of the wind field. The shaded region indicates the extent of the wind field, and the thin line its zonal

profile. Its meridional profile is very nearly latitude-independent. Wind stress is entirely westward and reaches

a maximum of 0.5 dyn/cm? in the centre of the ocean basin. The structure of the wind is described more
precisely in equations (48) and (49).

The meridional circulation patterns are also familiar. Along section 3, at the wind maximum,
there is a strong divergence of surface water from the equator; upwelling occurs above the core of
the Undercurrent at speeds as great as 0.0025 cm /s, and weaker downwelling occurs beneath the
core. There is a convergence of water at and slightly above the core at speeds approaching
10 cm/s. Along sections 2 and 4, where the driving wind is weak, the meridional circulation is
also weak but otherwise similar to that of section 3. Maximum upwelling, represented by the
fifth line of arrows in figure 4f, occurs at the point of the greatest zonal flow. The sign and
amplitude of u, determine the strength of convergence or divergence of fluid from the current
core. The meridional circulation patterns of sections 1 and 5, where there is no wind, are driven
entirely by this effect. Maximum divergence (convergence) of fluid occurs near the eastern
(western) edge of the wind patch.

In the western ocean equatorial pressure is higher everywhere by 9 dyn cm, and in the eastern
ocean it is lower everywhere by 6 dyn cm. In the central ocean the surface eastward pressure
gradient force reaches a maximum of 5 x 10~% dyn/g (equivalent to a sea level inclination of
—5x 1078, At the depth of the current core the pressure force reduces to half its surface value,
and at greater depths it becomes weakly negative. This equatorial pressure field is consistent with
the observations of Knauss (1966) as well as the calculations of Arthur (1960).

The density field, thatis, pv(z) + p(, y, z), has expected features. For example, along section 3
isopycnals at depths shallower than the core of the Undercurrent bend sharply upward within
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F1GURE 4b. Same as for figure 44, but along section 2 of figure 3.
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200 km of the equator to intersect the bottom of the mixed layer. Isopycnals at depths somewhat
greater than that of the current core bend downward. At greater depths isopycnals again bend
upward (but weakly), indicating the presence of the Equatorial Intermediate Current.
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FIGURE 4e. As for figure 44, but along section 5 of figure 3.

However, the density field also has unrealistic aspects which point out the limitations of the
linearization of the equation of heat conservation. As discussed above, a density inversion neces-
sarily exists at the base of the mixed layer wherever there is downwelling. Downwelling occurs in
the model off the equator in the central ocean and everywhere in the western ocean. The ampli-
tude of this inversion reaches a maximum of almost 0.0015 g/cm? slightly off the equator near
the western edge of the wind patch. In the central and eastern ocean, where the divergence of
fluid from the core of the Undercurrent is strongest and the equatorial spreading of isopycnals is
most intense, another region of static instability exists at and below the current core. Its width
and vertical extent increase markedly toward the east, reaching values of +480km and 100 m.
The maximum density inversion is 0.002 g/cm? over a depth of 100 m and occurs at the equator
near the eastern edge of the wind patch. Itis interesting that these two regions of static instability
coincide with the two regions in the Pacific Ocean where mixing apparently plays a surprisingly
strong role: the thick surface mixed layer in the western Pacific, and the thermostad in the eastern
Pacific (Tsuchiya 1975; Philander 1973, figure 7).
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F1cure 4f. Velocity sections along section 6 of figure 3. (i) Contours of zonal velocity. The contour interval is
20 cm/sec with dashed contours, + 10 cm/s. (ii) Vector plot of both the zonal and vertical velocity fields.
Calibration vectors in the lower left corner have amplitudes 0.005 cm/s and 100 cm/s in the vertical and
horizontal directions, respectively.

(b) The dependence on model parameters

It is important to know how the response of the model depends on the free parameters py(z)
and v. Do solutions vary strongly as vmin, the amplitude of mixing at the core of the Undercurrent,
changes? Does the response depend critically on the vertical structure of »? Is the presence of a
strong surface pycnocline or the existence of a mixed layer necessary for the generation of a
realistic Undercurrent? To answer these questions figures 5-7 compare profiles of zonal velocity
over a wide range of parameter values. All profiles are taken at the centre of the ocean basin,
point P of figure 3. In each figure the thicker reference curve is just that of the model Under-
current discussed above.

64-2
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Ficure 5. Profiies of zonal velocity at point P of figure 3, contrasting the model response for three different values
of ¥n. Curves G and L correspond to vy, = 5.3 and 0.069 cm?/s, respectively. The thicker curve corresponds
t0 Yy = 0.55 cm?/s. The maximum speed of the Undercurrent varies more weakly than v}
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F1cUre 6. Profiles of zonal velocity at point P of figure 3, contrasting the model response for three different back-
ground density structures. Profiles 1 and 2 correspond to curves 1 and 2 of figure 2, respectively. The thicker
profile corresponds to the thicker curve of figure 2. The profiles are very insensitive to the shape of py(z)
beneath the mixed layer.
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A STRATIFIED MODEL OF THE UNDERCURRENT 623

Figure 5 compares solutions in which vyin varies but py(z) remains fixed. In this way the
amplitude of v changes, but not its structure with depth. Profiles G and L show the model’s
response when vpin = 5.3 and 0.069 cm?/s, respectively. As vmin weakens, the Undercurrent
becomes stronger, shallower, and thinner, but the basic pattern of the equatorial currents
remains the same. While vmin decreases by a factor of 75, the maximum speed of the Under-
current increases only by a factor of 6, the depth of the current core shallows by a factor of 2,
and the jet thins by a factor of 6. The ¢-folding width of the jet decreases by a factor of 2. So,
although the results of the model depend on the choice of v, the dependence is weak. This
property is surprising, since in homogeneous layer models the flow field depends strongly on the
strength of vertical mixing. For example, in Stommel’s model the maximum speed of the Under-
current is inversely proportional to the mixing parameter, whereas here its speed varies more
weakly than vk

0 ] T T
I
L T x0.1
- | — 4
m’ :

—200} E

—400 . L

—200 0 200

zonal velocity [ (cm/s)

F1Gure 7. Profiles of zonal velocity at point P of figure 3, contrasting the model response for five different values of
mixed layer depth, H. The profiles correspond to the five unlabelled curves of figure 2. For convenience of
display, the profile with H = 0 is decreased in amplitude by a factor of 10, so that the surface velocity
field is actually — 1410 cm/sand the maximumspeed of the Undercurrent is somewhat greater than 300 cm/s.
The surface mixed layer is necessary to obtain realistic surface velocities, but other aspects of the flow
depend weakly on H.

Figure 6 compares solutions in which the deep density structure of the ocean varies, but vmin
remains fixed at 0.55 cm?2/s. In this way the vertical structure of v changes, but its amplitude in
the vicinity of the Undercurrent remains relatively unchanged. Profiles 1 and 2 show the model
response for the density structures 1 and 2 of figure 2, respectively. As the pycnocline becomes
increasingly confined to the surface, the Undercurrent becomes slightly weaker, shallower, and
thinner. There is no indication that its width changes. Evidently the model is very insensitive to
changes in the deeper density structure of the ocean. It also follows that the model is quite
independent of values of eddy viscosity in the deep ocean, even though they can be very large
there.
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624 J.P. McCREARY

Figure 7 compares solutions in which only the depth of the mixed layer is changed; the shape of
the deep pycnocline is unaltered, and the value of vy, again remains fixed at 0.55 cm?/s. The
profiles show the model response for the unlabelled density structures of figure 2. As H decreases,
the Undercurrent becomes somewhat stronger and shallower, but its thickness remains the same,
Again, there are no appreciable changes in the width of the jet. Much more significant changes
occur in the surface drift. As /7 decreases from 150 to 50 m, the surface drift increases markedly
by a factor of 7. When H vanishes, the flow reaches the absurdly large value of — 1410 cm/s.
Clearly, the presence of a sufficiently thick (/ 2 50-75 m) turbulent surface layer is necessary in
this model to obtain realistic surface velocities.

—2001

—400
—200 0 200

zonal velocity [ (cm/s)

Ficure 8. Profiles of zonal velocity at point P of figure 3 with and without ocean boundaries. The curves labelled
N, E, and W correspond to ocean basins with no boundaries, a single eastern boundary, and a single western
boundary, respectively. The thicker curve corresponds to an ocean basin with both boundaries. Only profile
N lacks westward flow at depth.

(¢) The effect of ocean boundaries

How important are ocean boundaries for the generation of the model Undercurrent? Figure 8
compares solutions from both bounded and unbounded ocean basins. For profile E (W) the
ocean has a single eastern (western) boundary. The thicker reference curve is that of the model
Undercurrent and has both boundaries. Profile N shows the model response when the ocean has
neither boundary. The similarity of these curves shows that ocean boundaries are not necessary
for maintaining the Undercurrent. (It is only necessary that the wind stress is bounded.) How-
ever, the differences among the curves suggest that boundary effects do extend well back into
the ocean interior. The presence of boundaries considerably weakens the surface flow and intensi-
fies the Undercurrent. Significantly, the unbounded response has no westward current beneath
the Undercurrent. Therefore, the presence of the Equatorial Intermediate Current is due
entirely to effects radiated from boundaries.
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A STRATIFIED MODEL OF THE UNDERCURRENT 625

5. DyNnAMICS

One way of describing the dynamics of ocean models is simply to state the dominant balances
of terms in the equations of motion. (Complicated numerical models are to alarge extent limited
to this approach.) For the present model this list of balances is very short, and not very revealing,
because the equations themselves are so simple. Off the equator the momentum equations are
very nearly in Ekman balance. As a result, for easterly winds there.is a divergence of surface
waters from the equator and subsequent upwelling there, just as in the Stommel model. At the
equator baroclinic pressure gradients are important in the momentum equations. Strong zonal
jets are in geostrophic balance there, and the zonal pressure gradient force balances the down-
ward diffusion of momentum as in the Arthur calculation. There are no clues from this list of
balances that suggest how the baroclinic pressure field is generated, nor is there any indication
why the flow field is so narrow and remains so strongly trapped near the ocean surface. Finally,
the role of radiation in the dynamics is not explained.

The method of solution adopted here, that is, the expansion into vertical normal modes, allows
another and more enlightening way of discussing the dynamics.‘ Rather than describing the
dominant balances that govern the tctal flow field, it is possible instead to describe those balances
that occur for individual modes. In this way the three-dimensional dynamics of equations (1) can
be understood by using concepts appropriate to the simpler two-dimensional dynamics of
equations (11). :

A nomenclature does not yet exist that labels various balances of (11). So, in the first part of this
section simpler models that illustrate important balances are discussed and labelled. Because the
flow fields generated by these simpler models have very unrealistic features, they also demonstrate
the necessity of both stratification and diffusion in the equatorial ocean. In the remainder of the
section this nomenclature is used to show how the presence of radiation affects the equatorial
currents.

(@) The necessity of stratification and diffusion

A model that illustrates the importance of stratification in the equatorial ocean ignores the
baroclinic (but not the barotropic) pressure gradients in (11). This dynamics is essentially that
studied by Stommel (1960); the only difference is that here the eddy viscosity is not necessarily
constant. The steady-state solution for each vertical mode is

I G L S
Un = "Ton~, X“%”2+A2/cs’
Uy = (CZ/A) (60507]1)”+F),
ﬁn - (&/A) (“o vm; + u'nz) .

Note that all fields are proportional to X, rather than integrals of X. Therefore, this dynamics is
purely local, and the radiation of equatorially trapped waves plays no role. It is useful to refer to
a single baroclinic mode, described by (51), as being in Ekman balance, and an oceanic flow in
which all baroclinic modes have this form as a baroclinic Ekman flow.

(51)

I

Figure 9 shows a meridional section of baroclinic Ekman flow comparable to that in figure 4¢;
the driving winds and model parameters are the same, and both sections are along section 8. The
meridional circulation pattern of figure 9 does serve to illustrate the equatorial pumping process,
but otherwise the flow has none of the realistic aspects of figure 4¢. All velocity components are
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absurdly large, the width of the equatorial current system is only about 100 m, and the flow field is
not confined to the upper ocean but extends all the way to the ocean bottom. Obviously the
presence of baroclinic pressure gradients in the momentum equations is crucial for the generation
of a realistic equatorial current structure.
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Ficure 9. Vertical sections of baroclinic Ekman flow, described by equation (51), showing (a) zonal velocity and
(8) meridional circulation along section 3 of figure 3. The contour interval is 1 km/s. Calibration vectors in
the lower left corner of the right panel have amplitudes of 100 km/s and 10 km/s in the vertical and horizontal
directions, respectively. Horizontal distance is in metres, not kilometres. This flow field, by its absurdity,

A

R

p
/A

] demonstrates the importance of stratification in the equatorial ocean.

S

S - Fundamental limitations of the equatorial Ekman model are evident in (51). A measure of the
= g width of the equatorial current system, L, is the position where v, reaches a maximum, so that
QO L = n/a, = A/Bc2 At this position v, = §(c?/4) F. At the equator w, = #(¢*/4*) F, and u, =
O (¢2/A) F. All these quantities are so strongly dependent on friction that a realistic Undercurrent
=uw

cannot be produced, regardless of the value of 4 (Stommel 1960). Note also that the amplitude
of the currents of a given mode varies like ¢*F' or ¢*F, which decrease rapidly with zn. Conse-
quently, the lowest-order modes are strongly favoured near the equator. The vertical structure of
the solution must look very much like the first baroclinic mode, and there is no evidence of surface
trapping.

A related model ignores the terms p,,, and u,, in (11), but retains the meridional pressure
gradient, p,,,. The essential difference between this dynamics and Ekman dynamics is that now
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A STRATIFIED MODEL OF THE UNDERCURRENT 627
zonal jets must be in geostrophic balance near the equator. The steady-state solution for each
vertical mode is ar

a Y1,
Up = —Ton OX 2 [77 jg/€s¢m(77)

n = (*/4) (cagmv, +F), (52)

pn == (64/A) %o Uny
Again, all fields are proportional to X, and radiation plays no role. Yoshida (1959) first found an

equatorial v-field like that of (52). It is therefore appropriate to define a single baroclinic mode
described by (52) to be in Yoshida balance. An oceanic flow in which all baroclinic modes have

8
|

*—7777777’7‘7’77AA!‘*FF\ZJJ[\L

— . .
< — this form is a baroclinic Yoshida flow.
olm
g0 ( ;:-—— — e— e— & - - — —
b)
: O P c S \ / — > —
- A ~
< Z 3 3 > & A
Yo s = 7 /1 \ N~ .
gg ! S A A L O
(7] 55 0 > > d 7‘ 7‘ 1\ ,Y R R (3
SE 5 =2 2 P2 M A A AN &
e e I N N S N R
-200 A 0 A A A A AR r «
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O : F1GURE 10. Vertical sections of baroclinic Yoshida flow, described by equation (52), showing (a) zonal velocity and
4 — (b) meridional circulation along section 3 of figure 3. The contour interval is 1 km/s. Calibration arrows in
S50 @) the lower left corner of the right panel have amplitudes of 0.005 cm/s and 10 cm/s in the vertical and hori-
I O zontal directions, respectively. The unrealistic zonal flow field demonstrates the importance of the establish-
~ ment of baroclinic zonal pressure gradients.
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Figure 10 shows a meridional section of a baroclinic Yoshida flow which is comparable to both
figures 4¢ and 9. The meridional circulation pattern is much improved over that in figure 9. It
closely resembles that of figure 4¢ in both magnitude and structure. The major difference is that
in figure 10 the convergence of fluid toward the equator takes place throughout the entire water
column, whereas in figure 4¢ the convergence takes place just beneath the surface mixed layer.
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The zonal current is still far too large and extends to the ocean bottom; in fact, at the equator it
isidentical to that of baroclinic Ekman flow. Clearly p,,, acts to set a reasonable width scale for the
equatorial current system. The zonal pressure gradient, p,,,, is essential for limiting the zonal flow
and for keeping the flow field confined to the near-surface region.

The reason for the improvement of the Yoshida model compared with the Ekman model is
evident in (52) and (51). The equations differ significantly in the structure of the v,-field. The
y-dependence of the Yoshida balance is determined entirely by the Hermite functions, ¢,,(7).
Therefore, the width scale of the equatorial region is L = O(ag?!), the equatorial Rossby radius
of the particular vertical mode, and does not depend on the friction parameter, 4. Provided that
a> A%/c® (which is true for the first thirty or so vertical modes in the flow field of figure 10), it
follows that v,, = O[F/(¢f)}] and w,, = O(F/c), so that the meridional circulation of a baroclinic
Yoshida flow is much less dependent on 4. The amplitudes of these currents vary like F/ct and
F/c,which decrease slowly with n. As a result, higher-order modes are more visible in the solution,
and the vertical structure of the meridional circulation no longer looks like the first baroclinic
mode. At the equator, the zonal flow still has the form «,, = (¢/4) F and suffers the same prob-
lems as that of the Ekman model.

A model that illustrates the importance of diffusion in the equatorial ocean ignores all drag
terms in (11). In an unbounded ocean the steady solution for each vertical mode is then

v, = “(l/ﬂ)Fy;
1 (= 1 o
U, =3 +wadx+{§%’10nYof_dex},

to= [T F-yr) @+ {igoron by [” xas),
+o —®

and w, is identically zero. Note thatu, and p,, are proportional to integrals of X. The dynamics are
thus inherently non-local and are intimately related to the presence of equatorially trapped radia-

(53)

tion in the model. Except for the terms in curly brackets (53) has the same form as the solutions
obtained by Sverdrup (1947) in describing the depth-averaged properties of oceanic flow. It is
useful to refer to a single baroclinic mode described by (53) as being in Sverdrup balance, and to
an oceanic flow in which all baroclinic modes have this form as a baroclinic Sverdrup flow.

The terms in curly brackets describe an x-independent, geostrophically balanced, zonal jet.
This steady jet appears only in an unbounded ocean and was missed by Sverdrup, who solved
his equations by requiring the boundary condition that # = 0 at an eastern ocean boundary. The
correct boundary conditions in the unbounded ocean are actually the radiation conditions
described in §3 of this paper. McCreary (1977, 1978) traces the adjustment of a baroclinic mode
to Sverdrup balance from an initial state of rest; the Sverdrup balance, including the equatorial
jet, develops only after Rossby and Kelvin waves radiate from the region of the wind. Figure 114
(discussed in greater detail below) contrasts the Sverdrup balance in both a bounded and an
unbounded ocean.

Baroclinic Sverdrup flows do not have a realistic equatorial current structure. In a bounded
ocean, the terms in curly brackets in (53) are absent, and the fields no longer involve ¢. The
sum over all vertical modes can be done explicitly in this case. The result is that all currents are
confined entirely to the surface mixed layer. If the wind field has no curl there are no currents;
instead baroclinic pressure gradients everywhere balance the wind stress. In an unbounded ocean
the terms in curly brackets provide an extra contribution to the flow which at the equator varies
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A STRATIFIED MODEL OF THE UNDERCURRENT 629

like F'/¢. Their sum does not converge, but rather has the character of a Dirac é-function; the
Undercurrent appears as an infinitesimally narrow, infinitely strong equatorial jet at the base
of the mixed layer. Evidently the vertical diffusion of heat and momentum cannot be neglected
in the equatorial ocean.

(b) The effects of radiation

In equations (11) the size of the drag coefficient, 4/¢? increases rapidly with the value of n.
Since ¢is roughly inversely proportional to n, 4 /¢? increases like n2. As a result, the character of the
solutions, (40), also changes markedly with n. Whether the effects of radiation are evident in an
individual mode strongly depends on the amplitude of the drag.

The magnitude of 4 /¢? affects the solution by specifying the decay rates of waves present in the
model. Recall that the solutions all involve terms of the form (41). Suppose that |kAx| > 1; that
is, waves are strongly damped before they can cross the wind patch. In that case, (41) simplifies to

{ — const. X/ik} eiot, (54)
If |kAx| < 1, waves radiate strongly out of the wind patch, and (41) becomes
{const. X dx} ellkztot), (55)
+ow

When 4/¢?is sufficiently large, |kAx| > 1 for all waves, and (54) holds for all the integrals in (40).
With some algebra, and use of (54), it can be shown that solutions (40) in steady state simplify to
the form (52). In other words, the high-order modes of the model, where friction is large, are all
in Yoshida balance. When 4/¢? is sufficiently small, |{*Ax| < 1 and |(w/¢) Ax| < 1, but |k§*Ax]|
remains greater than 1. With appropriate use of both (54) and (55), the steady-state solutions
(40) can be shown to simplify to the form (53). So, low-order modes of the model, where friction
is weak and radiation strong, are in Sverdrup balance.

The number of modes that are characterized by Sverdrup balance depends on the size of the
friction parameter. In fact, it is possible to choose 4 so large (unrealistically large) that none of
the modes can approach Sverdrup balance. For the solution of figures 4 a—f, 4 is set (realistically)
sothat | (w/c) Ax| = (4/¢®) Ax = 1 for n = 8. With this choice (4/¢%) Ax = 0.0019 and 7.02 forn =1
and 15, respectively. Therefore, modes for » > 8 tend to be in Yoshida balance, and modes for
n < 8 tend to be in Sverdrup balance. The oceanic flow generated by the model is neither a
Yoshida flow nor a Sverdrup flow, but a combination of both. It can be described as being a
Yoshida flow in which, because of the presence of radiation, a finite number of low-order vertical
modes tend to be in Sverdrup balance. The modes in Yoshida balance reproduce the meridional
circulation pattern associated with the equatorial Ekman pumping process. The modes in
Sverdrup balance create zonal baroclinic pressure gradients which balance the driving wind,
and so prevent the generation of unrealistically large equatorial zonal jets.

Boundaries are another source of radiation. High-order boundary waves (n > 8) decay
rapidly and can influence the flow field only near the boundaries themselves. They act to bend
equatorial currents into narrow coastal jets. The similarities among the curves of figure 8 are due
to the fact that the contributions of high-order modes to the profiles are not affected by ocean
boundaries. Low-order waves (n < 8) decay weakly and influence the flow everywhere in the
ocean basin. Equations (53) indicate how strongly the low-order modes can be altered by bound-
ary radiation. For each mode an equatorial jet, described by the term in curly brackets, extends
to the ocean boundaries. Boundary waves cancel this jet at the boundaries and in the interior

65-2
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Ficure 11a. The surface velocity fields due to the # = 1 mode in both (i) an unbounded ocean and (ii) a bounded
ocean. Calibration vectors are 1 cm/s and 10 cm/s in the vertical and horizontal directions, respectively.
Because damping is very weak, this mode is in Sverdrup balance, defined by equations (53). An equatorial
jet, described by the terms in curly brackets of equations (53), exists in the unbounded ocean, but is not
possible in the bounded ocean. The width scale of the jet is the equatorial Rossby radius of the n = 1 mode,
which here is 380 km.
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FiGure 115. The surface velocity fields due to (i) the n = 8 mode and (ii) the n = 15 mode. Calibration
arrows are 1 cm/s and 10 cm/s in the vertical and horizontal directions, respectively. Because damping is
strong the » = 15 mode is very nearly in Yoshida balance, defined by equations (52). The zonal structure of
the flow looks very much like that of the wind field. The n = 8 mode has aspects of both the Yoshida and
the Sverdrup balances. Damped boundary waves are evident along the eastern boundary. The width scales
of the equatorial currents are the equatorial Rossby radii for the n = 8 and n = 15 modes, which are 134 km
and 97 km, respectively.
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ocean as well. In the inviscid model of equations (53), where the jet is zonally uniform and the
boundary waves are undamped, this cancellation is complete. In the present viscid model the
boundary waves can only weaken the interior jet, not eliminate it. The differences among the
curves of figure 8 are all attributable to whether equatorial jets associated with low-order modes
are weakened by the presence of boundaries.

Clearly, higher-order modes play a significant role in this ocean model. Yet previous workers
have argued that only the lowest-order vertical modes should be important (Lighthill 1969;
McCreary 1977). They assume that a measure of the amplitude of the response of each mode is
simply F, the coupling coefficient of the mode to the driving winds. Since F decreases rapidly
with 7 for realistic choices of py(z), their conclusion follows. The flaw in this argument is that F
alone is not an accurate measure of the response of each mode. How rapidly the solution con-
verges with n generally depends in a complicated way on ¢ and other factors as well (Merrill &
Geisler 1980). In the present model the effect of the gravest modes on the flow field is inhibited
because radiation allows them to adjust to Sverdrup balance; for such modes a measure of the
response is either zero or F/¢ (which decreases slowly with ), depending on whether the ocean is
bounded. As a result, higher-order modes are much more visible in the solutions.

The visibility of higher-order modes is apparent in the solution of figures 4 a—fin that the flows
have none of the characteristics associated with the gravest modes. For example, the equatorial
Rossby radius, ag!, of the » = 1 mode is 380 km, but the ¢-folding width of the model Under-
current is far smaller than this value. The zero crossing of the n = 1 mode occurs at a depth
greater than 500 m, but the first zero crossing in the solution occurs just beneath the surface mixed
layer. Therefore, the narrow width scale and strong surface trapping of the equatorial currents
are directly traceable to the presence of radiation in the model dynamics.

Figures 11a and 115 illustrate the ideas discussed in this section. They show the surface velocity
contributions of individual modes to the solution of figures 4a—f. The horizontal structures of the
currents vary markedly with ». Damping for the » = 1 mode is very small. This mode, then, is
virtually in Sverdrup balance. As expected, when boundaries exist there is no equatorial flow.
Currents off the equator are caused by the weak wind curl there. Without boundaries there is an
additional strong contribution from the equatorial jet. The width of the jet is set by a3, which
for this mode is a broad 380 km. Damping for the n = 15 mode is strong, and this mode is very
nearly in Yoshida balance. An indication of this balance is that the zonal dependence of the flow
looks very much like X(x). There is also divergence of fluid from the equator characteristic of
Ekman drift there. The ¢-folding scale of the equatorial current is quite narrow, since for this
mode ol is only 97 km. The n = 8 mode has aspects of both the Yoshida and Sverdrup balances.
The effects of radiation are apparent in that the zonal dependence of the flow does not look much
like X(x). Instead, currents extend all the way to the eastern boundary. The flow towards the
equator along the boundary indicates the presence of boundary waves. The strength of damping
is evident in that the boundary waves decay rapidly back into the ocean interior and do not
cancel the equatorial jet. There is divergence of fluid from the equator. For this mode ag? is
134 km, and the equatorial jet reflects this scale.
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6. SUMMARY AND DISCUSSION

The model studied here can be regarded as an extension of Lighthill’s model that allows the
diffusion of heat and momentum into the deeper ocean and consequently the existence of non-
trivial steady solutions. The equations of motion are also similar to those studied by Stommel
(1960). The only difference is that the present model is stratified and so can generate a baroclinic,
as well as a barotropic, pressure field. It is perhaps the simplest way to extend Ekman flow to the
equator in a stratified ocean.

The response of the model depends on two parameters, pn(z) and v. The response varies weakly
with the shape of the pycnocline below the mixed layer and also with the magnitude of friction in
the deeper ocean. The size of friction at the core of the Undercurrent affects the response less than
might be expected. For example, the maximum speed of the Undercurrent, Unax, varies more
weakly with friction than V;,%n, whereas in Stommel’s homogeneous ocean model Unax is in-
versely proportional to the mixing parameter. The depth of the mixed layerstronglyinfluences the
speed of the surface drift, but other properties of the flow to a much lesser degree. The width scale
of the equatorial currents is virtually independent of both parameters. In general, the structure
of the solutions is insensitive to changes in parameters and thus insensitive to the unconventional
parameterization of the diffusion terms, (2).

The expansion of the solution into vertical normal modes provides a very useful way of dis-
cussing the dynamics of the model and of understanding many of the properties of the solution.
The effects of radiation in the model are evident in that low-order vertical modes can approach
Sverdrup balance. Only by means of the radiation of equatorially trapped Rossby and Kelvin
waves can a baroclinic mode reach a state of Sverdrup balance. This property weakens the
contribution of the low-order modes to the flow field. For example, in a bounded ocean basin the
Sverdrup balance is a state of no motion in which a zonal pressure gradient balances the applied
wind stress. As a result, higher-order modes are much more visible in the total solution than might
be expected. This visibility accounts for the narrow width and surface trapping of the flow field.
Higher-order modes tend to be in Yoshida balance, a local dynamics unaffected by radiation.
These modes generate the meridional circulation pattern that characterizes equatorial Ekman
pumping.

The model is forced by a patch of wind confined to the ocean interior. The wind is steady,
westward, and without curl. The model develops a realistic equatorial current structure. Beneath
westward surface drift there is an eastward-flowing Equatorial Undercurrent with width,
thickness, and magnitude that compare favourably with observation. At greater depths thereis a
westward Equatorial Intermediate Current. This deeper current exists only in an ocean with
meridional boundaries. The meridional circulation pattern closely resembles the flow field
suggested by Cromwell (1953). There is a divergence of surface water from the equator, con-
vergence at the core of the Undercurrent, strong upwelling above the current core, and weaker
downwelling below. The model baroclinic pressure field closely resembles the observations of
Knauss (1966).

The model fails to produce other observed aspects of the equatorial flow field. The Under-
current necessarily cannot meander in this steady-state model, nor can it develop a secondary
ageostrophic Undercurrent (or any velocity shear at all) in the simple mixed layer. The model
fails to account for a thick surface mixed layer in the western ocean, and a deep thermostad in the
eastern ocean (although the presence of density inversions in this model provides suggestive
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hints as to their cause). Model currents are always strongly trapped to the surface, and there is no
evidence of large-amplitude stacked zonal jets at the equator. Maximum zonal flow is always
concentrated on the equator, and there are no subsurface eastward jets off the equator distinct
from the Undercurrent. The model is currently being extended to see if the linear theory can
account for some of these phenomena.

The most important result of this paper is that a stratified linear model can generate many of
the observed features of the equatorial current system. It is not claimed here that nonlinearities
do not play a significant role in equatorial dynamics. Their importance is evident in that the
linearized advection of heat allows the development of density inversions. Moreover, without the
surface mixed layer the linear surface drift is far too large. Finally, a consistency check (with the
aid of figures 4 a—f’) shows that the nonlinear terms wuu,, vu,, and wu, are of the same order of magni-
tude as the linear terms in localized regions of high-velocity gradients. However, the success of the
linear model does suggest that nonlinearities are not essential in equatorial dynamics. They
apparently act only to modify, not to destroy, the linear solution found here. In conclusion, it is
hoped that this paper will facilitate the understanding of more comprehensive, fully nonlinear
models of the Undercurrent, like those of Semtner & Holland (1980) and Philander & Pacanow-
ski (1980).
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